BIASED RANDOM WALKS

Mikhail Beliayeu, Petr Chmel, Jan Petr
Mentor: Dr Bhargav Narayanan

REU 2019, Rutgers University

This presentation is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 823748.
Let $G = (V, E)$ be a graph, $a \neq b \in V$. A simple random walk is a randomly generated sequence of vertices (v_i) such that $v_1 = a$, $v_{i+1} \in N(v_i)$ and v_{i+1} is chosen uniformly at random.
Let $G = (V, E)$ be a graph, $a \neq b \in V$. A simple random walk is a randomly generated sequence of vertices (v_i) such that $v_1 = a$, $v_{i+1} \in N(v_i)$ and v_{i+1} is chosen uniformly at random.

The hitting time of b is the number of steps the walk needs to reach b from a.

It was shown [Aleliunas et al., 1979, F. Lawler, 1986] that the expected hitting time on any connected undirected graph is of order $O(n^3)$. To be precise, the expected hitting time is at most $\frac{4}{27} n^3 - \frac{1}{9} n^2 + \frac{2}{3} n - 1$ [Brightwell and Winkler, 1990].
The main question

Biased walk

Given a graph $G = (V, E)$, choose some vertices $F \subseteq V$ and a target $b \in V$. In these ‘excited’ vertices, the random walker will deterministically take a step along a fixed shortest path to b.
The main question

Biased walk

Given a graph \(G = (V, E) \), choose some vertices \(F \subseteq V \) and a target \(b \in V \). In these ‘excited’ vertices, the random walker will deterministically take a step along a fixed shortest path to \(b \).
The Main Question

Biased walk

Given a graph $G = (V, E)$, choose some vertices $F \subseteq V$ and a target $b \in V$. In these ‘excited’ vertices, the random walker will deterministically take a step along a fixed shortest path to b.

Question

Does the hitting time of b change, and if so, how?
Can we show the same $O(n^3)$ bound on the expected hitting time as before?
Can we show the same $O(n^3)$ bound on the expected hitting time as before? **No.**
Can we show the same $O(n^3)$ bound on the expected hitting time as before? No.

Can we show any polynomial bound?
Can we show the same $O(n^3)$ bound on the expected hitting time as before? No.

Can we show any polynomial bound? No.
Problems and results

- Can we show the same $O(n^3)$ bound on the expected hitting time as before? No.
- Can we show any polynomial bound? No.
- Are there any other natural ‘biases’, which help the random walker?
Can we show the same $O(n^3)$ bound on the expected hitting time as before? No.

Can we show any polynomial bound? No.

Are there any other natural ‘biases’, which help the random walker? ¯_(ツ)_/¯
Theorem

For any \(c \in \mathbb{N} \), there exists a graph \(G = (V, E), |V| = n \) with vertices \(a, b \in V \) such that the expected hitting time of \(b \) when starting in \(a \) is \(\Omega(n^c) \). Moreover, only one excited vertex is required.
Superpolynomiality - General Idea

Diagram:

- Nodes labeled 'a' and 'b'
- 'Trap' node connecting to 'a' and 'b'

Graphical representation of 'Trap' relationships with 'a' and 'b'.
Superpolynomiality - General Idea

\[R_{3,1} \quad R_{3,2} \quad R_{3,3} \]

\[R_{2,1} \quad R_{2,2} \]

\[R_{1,1} \]

\[a \quad q_1 \quad q_2 \quad q_3 \quad b \]
Superpolynomiality - General Idea

Graph with nodes labeled $R_{3,1}$, $R_{3,2}$, $R_{3,3}$, $R_{2,1}$, $R_{2,2}$, and $R_{1,1}$. Edges connect these nodes, with a path from a to b through q_1, q_2, and q_3. The notation $\Omega(1)$ indicates a lower bound on a parameter or function.
SUPERPOLYNOMIALITY - GENERAL IDEA

\[R_{3,1} \quad R_{3,2} \quad R_{3,3} \]

\[R_{2,1} \quad R_{2,2} \]

\[R_{1,1} \]

\[a \quad q_1 \quad q_2 \quad q_3 \quad b \]

\[\Omega(1) \quad \Omega(n) \]
SUPERPOLYNOMIALITY - GENERAL IDEA

\[R_{3,1} \quad R_{3,2} \quad R_{3,3} \]

\[R_{2,1} \quad R_{2,2} \]

\[R_{1,1} \]

\[a \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow b \]

\[\Omega(1) \quad \Omega(n) \quad \Omega(n^2) \]
Superpolynomiality - General Idea
Lemma

The expected hitting time is at most \(n \cdot (n - 1)^{n-1} \).
Bounded degree

Biased walk with bounded degree

Given $d \in \mathbb{N} : d \geq 3$ and a graph $G = (V, E)$ with $\max_{v \in V} \deg(v) \leq d$, choose some vertices $F \subseteq V$. In these ‘excited’ vertices, the random walker will deterministically take a step along a fixed shortest path.
Biased walk with bounded degree

Given \(d \in \mathbb{N} : d \geq 3 \) and a graph \(G = (V, E) \) with \(\max_{v \in V} \deg(v) \leq d \), choose some vertices \(F \subseteq V \). In these ‘excited’ vertices, the random walker will deterministically take a step along a fixed shortest path.

Question

Is the expected hitting time still superpolynomial?

In the case of undirected connected graphs without excitation, the upper bound is \(O(n^2) \) [Aleliunas et al., 1979, F. Lawler, 1986].
We cannot use the identical approach as in the previous construction.

- We cannot make the probability of going ‘up’ arbitrarily high.
- The vertex a must have its degree lowered.
BOUNDDED DEGREE - NEW CONSTRUCTION
BOUNDDED DEGREE - NEW CONSTRUCTION

\[a \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_5 \rightarrow b \]

Nodes: \(a, q_1, q_2, q_3, q_4, q_5, b \)

Edges: "bounded degree" connections between nodes.

Labels: \(R_{i,j} \) for each connection.
More excited vertices necessary (roughly \sqrt{n})
Lemma

The expected hitting time for maximum degree d is at most $n \cdot d^{n-1}$.
Bounded Degree - Proof Idea

Diagram showing nodes and edges labeled with indices and variables.
REFERENCES

