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Definition 1 (Minor, induced, topological minor). A graph H is

• a minor of a graph G if it can be obtained from a subgraph of G by a series of contractions

• an induced minor of a graph G if it can be obtained from an induced subgraph of G by a series of
contractions

• topological minor of a graph G if it can be obtained from a subgraph of G by a series of topological
contractions (the inverse operation to a subdivision),

Lemma 1 (Minors and models). A graph H is a minor of G ⇔ there exists a map f : V (H) → P(V (G))
satisfying the following:

1. ∀u ∈ V (H) : f(u) is nonempty and connected

2. ∀u, v ∈ V (H) : f(u) ∩ f(v) = ∅

3. {u, v} ∈ E(H)⇒ ∃{u′, v′} ∈ E(G) : u′ ∈ f(u), v′ ∈ f(v).

If talking about induced minors, then 3) is an equivalence.

Proof. “⇒”: Every u ∈ V (H) is obtained by a series of contractions of a connected subgraph: the vertices
of the subgraph are the result of the map (disconnected components cannot combine), which implies 1.
Property 2 is obvious by definition. Property 3 is proven by contrapositive: if {u′, v′} does not exist for any
u′ ∈ f(u), v′ ∈ f(v), then there cannot be an edge {u, v}.

“⇐”: We contract f(u) into u, the conditions guarantee it works (TODO). �

Lemma 2 (Topological minors and minors with small degree). If H has ∆(H) ≤ 3, then H is a minor of G
⇔ H is a topological minor of G.

Proof. “⇐”: Simple: every topological minor is a “normal” minor.
“⇒”: H is a minor, and hence there exists a map f : V (H)→ P(V (G)) satisfying the following:

1. ∀u ∈ V (H) : f(u) is nonempty and connected

2. ∀u, v ∈ V (H) : f(u) ∩ f(v) = ∅

3. {u, v} ∈ E(H)⇒ ∃{u′, v′} ∈ E(G) : u′ ∈ f(u), v′ ∈ f(v).

We first connect each adjacent f(u), f(v) by a single edge. Next, we find a spanning subgraph connecting
the edge ends in the respective subsets. Finally, we do topological contractions, which can be done as H is
of maximum degree three and hence the spanning subgraphs are either paths, single vertices or subdivided
three-star (K1,3). �

Observation (Transitivity of being a minor). F ≤m H,H ≤m G⇒ F ≤m G, G ≤m H∧H ≤m G⇒ G ∼= H.

Definition 2 (Closed classes). A class G is closed on taking minors if G ∈ G ∧H ≤m G⇒ H ∈ G.

Observation (Observations on closed classes). If G is closed on minors, then it is also closed on induced
minors. Also, if G is not closed on induced minors, then it is also not closed on general minosr.

Planar graphs are closed on minors.

Theorem 1 (Kuratowski-Wagner). The following are equivalent:

• G is planar

• G has no subdivision of K3,3 or K5 as a subgraph
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• G has neither K3,3 nor K5 as a minor

Proof. 3⇒ 2 is trivial: if G has either subdivision, it has a topological minor, which is a minor.
2⇒3: if graph has a K3,3 as a minor, then it has a K3,3 as a topological minor, and hence it has a

subdivision of K3,3. If the graph has a K5 minor, then either it has a K5 as a topological minor, or we
contracted an edge of high degree. Then, we can find a minor of K3,3. �

Definition 3 (Outerplanar graph). A graph is outerplanar if it allows a drawing where every vertex is
nicident with the outer face.

Theorem 2 (Forbidden minors of outerplanar graphs). G is outerplanar, if and only if it has no K4 nor
K2,3 minor.

Proof. “⇐” By contrapositive: if it has one of the minors, they are obviously the obstructions.
“⇒” If it has neither K4 nor K2,3, then it is surely planar, hence we can assume it is planar but not

outerplanar. Therefore in every planar drawing, there exists a vertex inside the complement of the outerface.
It must have a degree at least two (otherwise we could just draw it outside) and either the two neighbors
must be nonadjacent (we could put it outside otherwise) or it has at least three neighbors which form a
triangle. In the first case, we get a K2,3, in the second, we get K4.

Other possibilities: adding some random vertex, duals of outerplanar graphs are simple forests, or induc-
tion and ear lemma. �

Definition 4 (Quasiordering). A quasiordering is a transitive, reflexive relation.

Definition 5 (Well-ordered class). A well-ordered class is (X,≤) such that for every infinite sequence
(ai)

∞
i=1 ⊂ X, there exist ai, aj : ai ≤ aj ∧ i < j. (There is no infinite decreasing sequence.)

Observation. In a well-ordering, every sequence has a nondecreasing subsequence.

Proof. Using infinite Ramsey theorem: one color for good pairs, other for bad pairs. �

Definition 6 (Set of forbidden elements). For (X,≤) a quasiordering, Y ⊆ X, we say that O is a set of
forbidden elements for Y , if ∀x ∈ X : x 6∈ Y ⇔ ∃o ∈ O : o ≤ x.

Observation. O exists if and only if Y is a down-set (dolńı množina).
Furthermore, if Y is closed downwards, then O exists and is finite as the set of minimal elements of X \Y

(factored by the equivalence classes).

Theorem 3 (Higman). Let (X,≤) be a well-ordering. Then (Xfin,≤) is well-ordering, where Xfin is a set
of finite subsetets of X, where A ≤ B iff there exists an injection f : A→ B such that ∀a ∈ A : a ≤ f(a).

Proof. Proof by contradiction: let (X,≤) we a well ordering, but let there exist (Ai)
∞
i=1 such that ∀i : Ai

is chosen as the smallest such that it permits a non-well extension. Then, we set ai ∈ Ai arbitrarily,
BI = Ai \ {ai}. We know that (X,≤) is a well-ordering, and hence ai has a non-decreasing subsequence
ai1 , . . .. By the choice of Ai, the sequence A1, . . . , Ai1−1, Bi1 , Bi2 , . . . must have a good pair, which yields a
good pair in (Ai), which gives us a contradiction. �

Theorem 4 (Kruskal). The class of finite rooted trees is well quasiordered by the topological minor relation.

Proof. Proof by contradiction: let’s find (Ti)
∞
i=1 such that ∀i, Ti is the smallest tree permitting a non-well

extension. We denote ri as the root of Ti, Fi := Ti \ {ri},F :=
⋃

i Fi.
First, we show that F is well-ordered. Taking an arbitrary sequence (Bj)

∞
j=1, Bi ∈ F and for each j, we

set i(j) such that Bj is a component of Fi(j) and we take the subsequence Bj1 , . . . such that i(j1) ≤ i(j2) . . .
byla neklesaj́ıćı. Therefore, T1, . . . , Ti(j1)−1, Bj1 , Bj2 , . . . is well, and therefore F is well-ordered.

Now, every Fi ∈ Ffin, therefore (Ffin,≤) is well-ordered (by Higman theorem), and therefore the sequence
(Fi)

∞
i=1 has a good pair (Fi, Fj), therefore (Ti, Tj) is a good pair as well. �

Definition 7 (Tree decomposition). A tree decomposition of a graph Gsi a tree T such that the vertices of
T (nodes) are subsets of V (G) and
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1. ∀e = (u, v) ∈ E(G) : ∃Xi ∈ V (T ) : {u, v} ⊆ Xi

2. ∀u ∈ V (G) : the nodes of T containing u form a nonempty connected subgraph (a subtree in particular)

Definition 8 (Treewidth). The width of a tree decomposition T is maxXi∈V (T ) |Xi − 1|.
The treewidth tw(G) is the minimum possible width of any tree decomposition of G.

Observation (On connectivity condition). The connectivity condition in the definition of the tree decom-
position can be equivalently expressed as follows: “if Xk is between Xi and Xj on T , then Xi ∩Xj ⊆ Xk”

Observation (Treewidth of a disconnected graph). The treewidth of a disconnected graph is the maximum
of treewidths of its connected components.

Lemma 3. tw(G) ≥ ω(G)− 1

Proof. We show that for any clique K of graph G, there is a node X ∈ V (T ) such that K ⊆ X.
By contradiction: let there be T,K such that ∀X ∈ V (T ) : K \X 6= ∅. We direct the edges of T towards

the missing vertices of the set. There has to exist an edge {Xi, Xj} which is directed both ways as every bag
directs at least one edge. Therefore we get that for u ∈ K \Xi, v ∈ K \Xj , u 6= v there is no bag containing
the edge {u, v} of the clique, a contradiction. �

Theorem 5 (Treewidth and minors). If H is a minor of G, then tw(H) ≤ tw(G).

Proof. There are three operations which we apply on the graph and change the tree decomposition accord-
ingly:

• vertex removal: just remove the vertex from the bags

• edge removal: we don’t have to do anything

• edge contraction: rename one vertex to the other, as they shared an edge, the subtree induced by the
vertex remains connected

�

Remark (Treewidths of some classes/graphs). • tw(T ) for T any tree is 1

• tw(Q3) = 3

• tw(Km,n) = min(m,n)

• tw(P ) ≤ 2 for any P outerplanar graph

• tw(G) = 1⇒ G is a forest

Definition 9 (k-terminal graph, gluing). A k-terminal graph is a graph where k distinct vertices are marked
as terminals t1, . . . , tk.

We say that � is an n-ary gluing operation of k-terminal graphs if for H = �(G1, . . . , Gn) if thods that H
was obtained from the disjoint union of G1, . . . , Gm by merging presribed sets of terminal – in each merge,
at most one terminal from each Gi perticipates. Moreover, the terminals of H are also prescribed with
terminals of G1, . . . , Gn or the merged vertices.

Definition 10 (Recursively defined classes). A recursively defined graph class of k-terminal graphs is given
by a pair (O,B), where O is a set of operations and B is a baseset of base graphs.

We say that a graph G belongs to the class if it can be obtained from the base graphs by the applications
of operations. (This can be denoted by a composing tree.)

Example 1 (Binary operations on 2-terminal graphs). �s - serial join: joins t2 of G1 with t1 of G2, and ti
of Gi is the ti of the result
�p - parallel join: joins t1’s together and t2’s together, the resulting vertex is the ti
�j - jackknife join: joins t2 of G1 with t1 of G2, and ti of G1 is the ti of the result
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Observation (A simple recursively defined class). The class given by ({�j}, {K2}) is precisely the class of
trees.

Definition 11 (Series-parallel graphs). Series-parallel graphs are precisely the graphs given by ({�s,�p}, {K2}).

Theorem 6 (Series-parallel graphs have treewidth ≤ 2). Series parallel graphs and their subgraphs are
precisely the graphs of treewidth ≤ 2.

Proof. Two goals: if series-parallel graph, then treewidth is at most two, and if treewidth is at most 2, then
show it is a subgraph of series-parallel graphs.

First, given a series-parallel graph, we show the treewidth is at most two. The base graph, K2 has
tw(K2) = 1 ≤ 2. Overall, we seek rooted decompositions which have precisely the two terminal vertices in
the root.

Series operation: we join them with a node with the three vertices and then create a new root with just
the two noew terminals.

Parallel operation: just glue the tree together with the root intact.
The other direction, given a graph G with tw(G) ≤ 2, we show that it is a subgraph of some series-parallel

graph. Without loss of generality, we may assume that every node of T induces a K3 (if not, add an edge
and it does not break the treewidth, or add a vertex from one of the neighbors). For {Xi, Xj} ∈ E(T ), we
get that |Xi ∩Xj | = 2 (otherwise we may add more intermediate bags).

For any leaf, we get that the bag consists of three nodes u, v, w, then one of the three nodes does not
appear anywhere else in the tree decomposition. By induction hypothesis and the construction tree for G′′,
some leaf of the tree corresponds to K2 = {u, v}. �

Definition 12 (Chordal graphs). A graph is chordal, if it has no hole (hole is an induced cycle of length
≥ 4).

Proposition 1 (Simplicial vertices of chordal graphs). Every chordal graph has a simplicial vertex.

Proof. By contradiction: let there for every vertex v ∈ V be two neighbors x 6= y ∈ N(v) with {x, y} 6∈ E.
Then a minimal cut (denoted by Sv) which divides x and y must be a clique (we would get a chordless cycle
otherwise). Then we denote A1, . . . , Ak the components of G \Sv. Any other Su lies inside Ai ∪Sv for some
i. Therefore the cuts do not cross (in some sense). Let us take u such that one of the components G \ Su

is the smallest possible and denote it by A. Then for any w ∈ A, it hodls that Sw divides a even smaller
component inside A ∪ Sv, a contradiction. �

Corollary 1. Every chordal graph has a tree decomposition where every node induces a clique.

Proof. G has a simplicial vertex u. G− u has such decomposition by induction hypothesis, we just add the
new vertex either to the remaining clique, or we add a new node. �

Definition 13 (k-tree). A k-tree is either a Kk+1, or a graph which is created from a k-tree by adding a
simplicial vertex to a clique of size k.

Proposition 2 (Treewidth and k-trees). A graph G has treewidth at most k if and only if it is a subgraph
of a k-tree

Proof. “⇐”: By definition, the treewidth of k-tree is k, hence any subgraph has treewidth at most k.
“⇒”: Given a tree decomposition T , we extend the decomposition by adding nodes, edges and vertices

so that the tree-decomposition corresponds to a k-tree. �

Corollary 2. tw(G) := min{ω(G′)− 1 : G ⊆ G′, G′ is chordal}

Definition 14 (Separator). By a separator of A and B we mean a partition of V (G) into three parts A,B, S
such that every every path from a ∈ A to b ∈ B goes through S.

Proposition 3. If Xi, Xj is an edge of a tree decomposition T of a graph G, then (at least) one of the
following holds:

• the intersection Xi ∩Xj is a separator in G,
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• all nodes of the component T − {{Xi, Xj}} containing the node Xi are subsets of Xj ,

• all nodes of the component T − {{Xi, Xj}} containing the node Xj are subsets of Xi.

Proof. By contradiction: assume that neither of the last two holds. Then there has to exist a path outside
of Xi ∩Xj , however the path must cross the edge, and hence there is one vertex in both Xi and Xj . �

Observation. For every tree decomposition T and each W ⊂ V (G), it holds that either W ⊆ Xi for Xi ∈ Vt
or there exists an edge (Xi, Xj) ∈ E(T ) such that W reaches in both parts ot G \ (Xi ∩Xj).

Proof. Either the first case from the previous proposition holds, or G[W ] does not induce a clique, hence
there are a, b not connected by an edge in G such that a ∈ Xi \Xj , b ∈ Xj \Xi. �

Definition 15 (Good separator). We say that S is a good separator for W ⊆ V (G) if both A and B have
at most 2/3 vertices of W (|A ∩W | ≤ 2

3 |W |).

Observation (Treewidth and good separators). If tw(G) ≤ k, then each W has a good separator of size at
most k + 1.

Proof. Let T be a tree decomposition with all nodes of size ≤ k + 1. Then we may assume without loss of
generality that each node has degree ≤ 3 (we split the vertex into two otherwise) and then, there can be at
most one subtree with more than 2/3 vertices of W . However, then the other two subtrees together combine
for less and a contradiction quickly follows. �

Theorem 7 (Reed). If every W ⊆ V (G) has a good separator of size ≤ k + 1, then tw(G) ≤ 4k + 3.

Algorithm 1 (Tree decomposition - Reed). Input: a graph G, W ⊆ V (G) : |W | = 3k + 3, output: tree
decomposition T of G with widrth ≤ 4k + 3, where W ⊆ Xroot. Runs in time O(27k · n2).

TreeDecomp(G,W):

if |V(G)|\leq 4k+4, put all in one bag and return

otherwise find a good separator S for W in size at most k+1 as follows:

try all partitions of W into W_A, W_B, W_S and expand W_S into S

(possible if there are no k+2-|W_S| disjoint paths between W_A and W_B)

If we fail for all possible cases, then W has no separator and we fail

if this fails, then halt, as treewidth is more than k

otherwise S separates A and B

Then G_A = G[A\cup S], W_A=S\cup (W\cap A), T_A = TreeDecomp(G_A, W_A)

Also G_B = G[B\cup S], W_B=S\cup (W\cap B), T_B = TreeDecomp(G_B, W_B)

(Note that W_A, W_B might need to add some vertices)

Set T = T_A\cup T_B \cup X_{root}, where X_root = W\cup S and return T

Complexity: 3-partitions in O(3|W |) = O(33k+3) = O(27k), and the extension can be found via flows in
O(k · |E(G)|) = O(k2n) time as there are at most kn edges in the graph.

Definition 16 (Strongly linked set). A set W ⊆ V (G) is called strongly k-linked if it has no good separator
with at most k vertices.

Theorem 8 (Alan, Seymour, Thomas: planar graphs and grid minors). Every planar graph of treewidth
≥ 20k − 12 contains a k × k grid as a minor.

Proof. tw(G) ≥ 20k − 12, therefore G contains stronly (5k − 3)-linked set W .We take the planar drawing if
G and identify it with a closed Jordan curve ϕ such that

• ϕ intersects the drawing only in vertices
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• ϕ contains at most K vertices

• the interior of ϕ contains at least 2/3 vertices of W

• the interior of ϕ contains as few vertices as possible

Then without loss of generality, we may assume that ϕ contains exactly 4k vertices (the curve, not the
inside). If not, then we can reroute it slightly, Then, we denote the vertices v1, . . . , v4k.

If there are no k disjoint paths c1, . . . , ck where ci is path from vi to v2k+i, there is a cut of size ≤ k − 1
separating v1, . . . , vk from v2k+1, . . . , v3k and therefore we could get a ϕ with a smaller number of vertices
in the interior: there exists a curve ψ through the cut. Due to the choice of ϕ: there are ϕ1 ∪ ψ separating
at most 2/3 vertices of W , and the same holding for ϕ2 ∪ψ, we get that ϕ∪ψ shows that W is not strongly
(5k − 3)-linked. Therefore the column and row paths exist, and therefore we have the required minor. �

Definition 17 (Bramble, its order). A bramble in a graph G is a set system B = {B1, . . . , Bn} ⊆ P(VG)
such that

• each b ∈ B induces a connected subgraph

• for each pair of sets in the bramble, their union induces a connected subgraph

The order of a bramble B is the size of the smallewst W that intersects all B ∈ B.

Theorem 9 (A single direction of strong duality). If G has a bramble of order k + 1, then tw(G) ≥ k.

Proof. We show that in any decomposition T , some node X intersects all B ∈ B. By contradiction if not:
we direct the edges of T incident with X towards a set from B disjoint with X. Then, there is a bidirected
edge, which implies that there exist two separated sets in the bramble, a contradiction. �

Theorem 10 (Brambles and tree decomposition). If G has no bramble of order k+1 then for every bramble
B there is a tree decomposition such that ∀ node of size ≥ k + 1 is a leaf in T and does not cover B.

Proof. TODO �

Theorem 11 (Minimax theorem, Seymour, Thomas). maxB bramble minW convers B |W | = minT tree decomp. maxX bag |X|.

Proof. Prove by contrapositive: if G heas no bramble of order k + 1, then the treewidth is ≤ k. Then we
apply the previous theorem for B = {VG} to get T - there, all nodes must be of size ≤ k as each nontrivially
covers B, and hence tw(G) < k. �

Definition 18 (Nice tree decomposition). A tree decomposition T is nice, if T is rooted, every node Xi is
either

• a leaf

• it has two children Xj , Xk and Xi = Xj = Xk (join node)

• it has a single child Xj and either Xi = Xj ∪ {u} (introduce node for u) or Xj = Xi ∪ {u} (forget node
for u).

Theorem 12 (Optimal nice tree decompositions). Every graph G has a nice tree decomposition of width
tw(G).

Proof. Given an optimal T ′, we root the tree, replace leaves with paths, fix joins and fix paths between
differing nodes. �

Theorem 13. For every k there is a graph G on 3k vertices such that any of its nice tree decompositions
with one-vertex leaves has size Ω(k2).

Proof. We take a pairing on 2k vertices ui, vi and then add a single vertex w1 joined to ui. Then we add
w2, . . . , wk as universal vertices. Then tw(G) = k,Xi = {vi, ui, w2, . . . , wn}. Then there are paths of length
k, there are k of them and hence there are at least Ω(k2) nodes. �
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Theorem 14. For every G, there is an optimal nice T with at moste 4|VG| nodes (if we do not require
single-vertex leaves).

Proof. WLOG G is a k-tree - we choose u simplicial in G. By induction, G′ = G − u has a T ′ with
≤ 4|V (G′)| nodes. Then T ′ → T is allowed to use at most four nodes. If the node is a leaf, we need two
nodes: Xi → N(u) → N [u]. If the node is not a leaf, we need a split (two nodes) and two nodes from the
previous (we now have a leaf). �

Definition 19 (Path decomposition, pathwidth). Path decomposition is a tree decomposition, where T is
a path.

Pathwidth is the minimum possible width of a path decomposition. (Note that tw(G) ≤ pw(G).)

Theorem 15. For Tk, a rooted ternary tree with k + 1 levels, pw(Tk) ≥ k.

Proof. By induction: for n = 1, easy.
Let P be a path decomposition of Tk. Then we can join the decompositions, however there has to be a

single vertex that is staying from the leftmost to the rightmost or vice versa. Therefore pw(Tk+1) ≥ k+1. �

Theorem 16 (Pathwidth and treewidth). For any G on n vertices: pw(G) ∈ O(tw(G) log n).

Proof. We start with an optimal tree decomposition T with ≤ n nodes. The we define labels L : VT → N
recursively: L(Xleaf ) = 1, L(Xi) = max(L(Xj), L(Xk) + 1) where L(Xj) ≥ L(Xk) ≥ . . ..

We can just build the decomposition incrementally and the width corresponds to the width of T · log n
as it is at most tw(G) · L(Xroot), and the label is at most logarithmic. �

Definition 20 (Branch decomposition, branchwidth). Branch decomposition is a tree B with degrees 1 or
3, with a bijection between the leaves of B and edges of G. Any edge f of B divides E(G) into two partitions
Af , Af . The width of an edge f ∈ E(B) is the number of vertices both in Af and Af . The width of the
decomposition is the maximum width of an edge.

The branchwidth of a graph G is the minimum width of a branch decomposition of G.

Proposition 4 (Minors and branchwidth). If H is a minor of G, then bw(H) ≤ bw(G).

Proof. Removal of an edge: we just remove a leaf (and supress the vertex of degree 2).
Removal of a vertex: remove the leaves with edges and then supress the vertices of degree 2.
Contractions: remove the edge {u, v} and then rename the vertices. �

Proposition 5 (Branchwidth and treewidth). If bw(G) ≥ 2, then bw(G) ≤ tw(G) + 1 ≤ b 3
2bw(G)c.

Proof. Given a tree decomposition, we do the following:

• For every edge, we take some node Xi 3 r and we add e as a leaf

• We do similar changes on other vertices as ib trees

• The weights of original edges are given by Xi ∩Xj

• The weights of new edges are bounded by |Xi|

Hence bw(G) ≤ tw(G) + 1.
Next, given a branch decomposition, we take it as a tree decomposition. The size of X is surely less than

the sum of widths of edges divided by two: the vertices in the nodes are the ones which add one to widths,
and since the vertices are internal, they have degree three and hence the width is at most b 3

2bw(G)c. �

Definition 21 (NLC-width). A build-tree for G is a tree with G as the root node and three types of nodes:

• a leaf: creation of a vertex v with a label i(v)

• Qr with r : I → I - a relabeling of the son by r

• ⊕s, s ⊆ I × I - two children, creates edges between label i in the left son and j in right son ∀(i, j) ∈ S.
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NLC-width (node-labelled controlled width) is the least necessary number of labels needed to build G.

Theorem 17 (NLC-width and treewidth). nlcw(G) ≤ 2tw(G)+1 + tw(G) + 1

Proof. TODO �

Definition 22 (Rank decomposition, rankwidth). Rank decomposition is a ternary tree R (unrooted, every
internal vertex has degree 3) with leaves in one-to-one correspondence with the vertices of the given graph.

For an edge e, the matrix Ae is a {0, 1}-matrix with rows indexed by one component of the decomposition
R− e and columns indexed by the other with 1 being iff the two vertices share an edge.

The weight of an edge e is rank(Ae). The width of R is the maximum weight of an edge. The rankwidth
is the minimum possible width over all rank decompositions.

Theorem 18. rw(G) ≤ nlcw(G) ≤ 2rw(G)

Proof. TODO �

Definition 23 (Local complement). A local complement is an operation G → G ∗ v obtained by eschange
of the subgraph G[N(v)] by G[N(v)] in G.

Definition 24 (A vertex minor). A vertex minor H of G is obtained from an induced subgraph of G by
local complements.

Proposition 6. Local complements do not alter rankwidth.

Proof. TODO �

Corollary 3. if H is a vertex minor of G, then rw(H) ≤ rw(G).

Theorem 19 (Oum, ’07). Graphs of bounded rankwidth are well-quasi-ordered by vertex minors.
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